Mixing HMA for Performance

David L. Lippert, P.E.
Sustainability Implementation Engineer
Illinois Center for Transportation
University of Illinois at Urbana-Champaign
Disclaimer

This presentation is based upon work in progress under project:

ICT-R27-161- CONSTRUCTION AND PERFORMANCE MONITORING OF VARIOUS ASPHALT MIXES

Project Chair: James S. Trepanier

This work is sponsored by the Illinois Department of Transportation through funding by the Federal Highway Administration. The contents of this presentation reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The content does not necessarily reflect the official views or policies of the Illinois Department of Transportation. This presentation does not constitute a standard, specification or regulation.

ACKNOWLEDGMENTS

Illinois Center for Transportation
University of Illinois at Urbana-Champaign

Timothy R. Murphy
Murphy Pavement Technology, Inc.

James S. Trepanier, Joseph W. Vespa
Bureau of Materials and Physical Research
George Houston and Dist 1 Materials Staff
R1/D1
Illinois Department of Transportation
Outline

- SuperPave Controls for HMA
- Performance Measure in HMA Pavement
- Distress Seen in Total Recycle Asphalt Section
- Typical HMA Project Types
- Performance of Various Asphalt Mixes (IHR 161)
- Thoughts for Future Specification Development Using Flexibility Index

SuperPave Specification Controls

- VMA, N-Design, Air Voids, Density and Asphalt Grade
- Each Impacts Performance
 - Raveling/Weathering/Segregation
 - Block Cracking
 - Transverse Cracking
 - Rutting
 - Centerline Joint Distress,
Additional Controls

- TSR (AASHTO T-283) – Rutting (Stripping)
- Minimum Tensile – Rutting
- Maximum Tensile – Cracking
- Hamburg – Rutting (Stripping)
- Material Transfer Devices (MTD) and Anti-Segregation Controls
- Smoothness Incentive/Penalty

HMA Performance Measures

<table>
<thead>
<tr>
<th>Construction Related Distresses</th>
<th>Mix Related Distresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ride</td>
<td>Rutting</td>
</tr>
<tr>
<td>Raveling/Weathering/Segregation</td>
<td>Transverse Cracking</td>
</tr>
<tr>
<td>Longitudinal Cracking</td>
<td>Block Cracking</td>
</tr>
<tr>
<td>(Paver Segregation and Roller Tears)</td>
<td>Raveling/Weathering/Segregation</td>
</tr>
<tr>
<td>Centerline Joint Distress</td>
<td>Centerline Joint Distress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Related Distresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutting (Remaining Layers)</td>
</tr>
<tr>
<td>Reflective Transverse Cracking</td>
</tr>
</tbody>
</table>
Distress Driving Rehabilitation

Block Cracking

Centerline Cracking
Distress Driving Rehabilitation

Raveling/Weathering/Segregation

“Where Excellence and Transportation Meet”

Distress Driving Rehabilitation

Rutting

“Where Excellence and Transportation Meet”
Distress Driving Rehabilitation

Transverse Cracking

2013 TRA Project Distress Surveys

<table>
<thead>
<tr>
<th>26th Street</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Harrison Street</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
2013 TRA Project Distress Surveys

Richards Street

<table>
<thead>
<tr>
<th>Year</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wolf Road

<table>
<thead>
<tr>
<th>Year</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Where Excellence and Transportation Meet”

HMA Project Types

- **New Full-Depth HMA**
- **New Composite (HMA over PCC)**
- **Overlays of Existing**
 - Bare PCC
 - Mill and Fill of Existing Overlay (2.25-3.0”)
 - Existing Thick OL (3-8+” HMA) over PCC
 - Existing Thin OL (2.25-3”) over PCC
 - Full-Depth HMA
 - Other Stabilized Base (Cement or Pozzolanic)

“Where Excellence and Transportation Meet”
Typical HMA Rehabilitation Designs

Existing Thick & Thin HMA/PCC/Bare PCC and Full Depth HMA

6-8” HMA

2.5-3” HMA

Old PCC

HMA

“Where Excellence and Transportation Meet”

Typical HMA Rehabilitation Designs

Rehabilitated Thick & Thin HMA/PCC/Bare PCC and Full Depth HMA

6-8” HMA

2.5-3” HMA

Old PCC

HMA

“Where Excellence and Transportation Meet”
Typical HMA Rehabilitation Designs

Existing Thick HMA/PCC

Before
- 6-8" HMA
- Old PCC

After Improvement
- Mill ~2.25"
- 1.5" HMA
- 0.75" Poly 4.75
- 3.75" - 5.75"
- Old PCC

Crack Initiation

Existing Thick HMA/PCC

“Where Excellence and Transportation Meet”
Crack Initiation
HMA on PCC (Bare or HMA Milled Off)

Old PCC

Crack Propagation
HMA on PCC (Bare or HMA Milled Off)

Old PCC
161 Experimental Mixes

<table>
<thead>
<tr>
<th>ASPHALT PG</th>
<th>ABR %</th>
<th>RAP %</th>
<th>RAS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-22</td>
<td>58-22</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>58-28</td>
<td>58-34</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>52-28</td>
<td>52-34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Sampling

Plant Mix
Lab Compacted (PMLC)

Cores
Testing

Binder PG Grading Asphalt Content/Mix Verification Moisture Damage (TSR)

Marshall Stability Cantabro Loss Texas Overlay

Testing

Complex Modulus Test Hamburg Wheel Track Semi Circular Bending Beam

Flow Number IDT Fracture / Creep Compliance Beam Fatigue

"Where Excellence and Transportation Meet"
Texas Overlay Tester

Crack Propagation
HMA on PCC (Bare or HMA Milled Off)
Surface HMA FI vs. Cracking

1st Winter: \[y = -176.4 \ln(x) + 385.7 \]
\[R^2 = 0.70 \]

2nd Winter: \[y = -309.6 \ln(x) + 699.5 \]
\[R^2 = 0.96 \]

3rd Winter: \[y = -337.0 \ln(x) + 860.1 \]
\[R^2 = 0.98 \]

IDOT Proposed Min 8.0
Washington St. Leveling Binder

I-FIT FI = 7
Laydown 5/29/15
Photo 6/9/15

4.75 Leveling Binder
0.75-Inch
PG 70-28
AC: 8.0%
ABR: 29%
RAP: 24%
RAS: 4.9%

“Where Excellence and Transportation Meet”

HMA Testing “Book Ends”

Too Soft

Too Hard
Too Soft “Book End” Full Imp. 2014
Hamburg Wheel Test

The Other “Book End”

- I-FIT and Flexibility Index
Research to Specification

- Single FI for all mixes?
 - Simple Goal for all Mixes
 - Single Value may not be Best Engineering Approach to Obtain Desired Performance

- Multiple FI’s
 - More Complex – Expands Number of Mixes
 - HMA Overlay Surface/Level Binder Values?
 - Full Depth HMA (Surface and Binder) Values?
 - HMA Shoulder Different Value?

Mixing HMA for Performance

- High Flexibility Demand
 - Level Binder Over PCC Pavement
 - Thin HMA Overlays

- Moderate Flexibility Demand
 - Thick Overlays of PCC Pavement
 - Thin Mill and Fill of Thick Overlay

- Low Flexibility Demand
 - Shoulders
Mix Use and FI Demand

Decreasing Flexibility Demand

Leveling Binder	Surface	Shoulder
High FI | | Low FI

Impacts

- Leveling Binder
 - Re-Engineer Mix to Provide Cross-Section Design Needs
 - PG Grades, Recycle and Gradation
- With Better Understanding of Cross-Section Influence on Cracking….
 - Data sets can be Refined
 - Establish I-Fit/FI Specification Values
Design Possibilities

- Leave HMA In-Place
 - No Milling – Existing Must be Stable
 - Hot-In-Place Recycle
 - Cold-In-Place Recycle
- Increase HMA Overlay Thickness
 - Must have Reasonable FI
 - Cost for Extra Material is Issue

Mixing HMA for Performance

- All Cross-Sections Benefit from Higher FI Mixes Resulting in Reduced Transverse Cracking
- Thin Overlays of PCC Pavement have High FI Demand
- Leveling Binder (Directly on PCC Pavement)
 - High Flexibility Demand
 - Could have Benefits from FI Value > 8.0
Reports (IHR 27-161)

- 2-Interim Reports
 - 2015 (Published)
 - 2016 (Jan 2017 +/-)

- Final Report
 - Dec 2017

Questions
THANK YOU

Main Quad – University of Illinois at Urbana-Champaign