Polymer-Modified Asphalt Supply Outlook

2009 Illinois Bituminous Paving Conference Champaign, IL December 9, 2009

> Henry Romagosa Market Development Manager ICL Performance Products LP

DeWitt & Company

Acknowledgements

Polymer Supply Information
 De Witt & Company
 Tom Brewer

Predominate Modifier

 Styrene–Butadiene– Styrene (SBS) is most widely used in US and around the world (≈ 90% of PMA market)

- Excellent performance – case studies
- Long history of success – since 1970's in Europe
- SBS produce a stable, compatible system easily used in today's construction practices

Styrenic Polymers (Elastomers)

SB and SBS

Block Copolymer (SB & SB<u>S</u>)

Why is SBS Currently in Short Supply?

- Styrene-Butadiene-Styrene (SBS) polymer capacity is not short
- Shortage of raw materials - Butadiene
- Ethylene production is the problem

Why is Ethylene Production the Problem?

Ethylene

By-products of Ethylene Production

- Styrene
- Propylene
- Butadiene
- Isoprene
- Pentadiene
- Cyclopentadienes
- Aromatic Resin Formers
- Isobutylene
- Amylenes
- Hydrogen
- Benzene

Ethylene & Butadiene Market Comparison

Ethylene Market

- 120 million tons per year
- Primary use packaging materials
 - Plastic wrap
 - Trash bags
 - Milk jugs

Butadiene Market

- 14 million tons per year
- Primary use tires (70%)
- Multiple other automotive and durable good uses
- SBS polymer for asphalt (6%)

How Is Ethylene Made?

- Basic ethylene production technology is called a steam cracking process
 - Process heats feed up to 1700 degrees, then injects steam that cracks the molecules
 - Cracker unit cost \$2 billion
- Choice between gas feeds like ethane, propane and butane and liquid feeds like naphtha and gas oils.
- Output is a mixture of ethylene and other products
- Requires a downstream purification processes to separate products

What's Important to Know About Ethylene Production

Choosing Feeds to Produce Ethylene

- Each producer runs an economic model
- Feed availability and costs for the producer at their location
 - Yield of each feed varies considerably
 - Demand for each product
 - Alternatives to buy versus make that product
- Ethylene and propylene are the prime products
 - Evaluate netback of all products
 - Liquid feeds generally produce 15:1 ethylene to butadiene
 - Economic impact of butadiene is not large
 - Based on the conditions producers set a feed slate for the "Cracker"
 - Butadiene shortage is not a primary consideration for feed slate

Model Output

- Liquids are always in the slate due to the facilities being built to be liquid crackers
- Crackers modified in the 80's to be flexible
- Flexibility depends on producer, but varies from ~10% to ~50%
 - Producing 3-5 million pounds a day a few pennies makes a big difference

What's Changed

- Structural change natural gas producers installed facilities to separate ethane
 - Ethane higher value than natural gas
- Ethane prices didn't increase with the crude oil run-up
- Economic incentive to run more ethane feed

Feed Slate Change in 2008

2008 Liquid Cracking Down 23% vs. 2007/6

Ethylene General Trends

- Little to no capacity additions in Western World
- Significant ethylene capacity additions in Middle East and Asia
 - Most of the Middle East is gas cracking
 - Most of Asia is liquid or naphtha cracking
- New trend for ethylene units outside of US to be more flexible to be able to run more gas feeds
 - Historically have been naphtha crackers
- Expect more flexible cracking; hence, more variable Butadiene supply

Global Rubber Perspective

- Global rubber demand in 2008 is 21.4 million tons, or 47 billion pounds
- Tires are the major consumer of synthetic and natural rubber
- Butadiene is a major component in most synthetic rubber: SBR, PBR, SBS, etc
- Decreased tire demand will significantly improve butadiene supply

July 2008 - Butadiene (Bd) Supply

- Globally tight due to lighter cracking and higher demand
 - 2008 Bd supply estimated at 75% of 2007
- New Bd and ethylene capacity due on-stream in Asia
- Expected capacity utilization to be lower than 90% for the foreseeable future

Regional differences

- US crude Bd supply tight due to light cracking in first half
- US has excess purification capacity and buys crude Bd from Europe to fill capacity
- Europe tight on supply due to somewhat lighter cracking; thus, less crude Bd to export to US

North American Butadiene Consumption

July 2008 - What Factors Will Influence Supply?

Positive

- New capacity
- Bd pricing itself out of some applications
- High gas prices:
 - Less driving mean
 fewer replacement tires
 - Smaller
 vehicles/smaller new
 car tires
- Slowing economy; less growth

Negative

- Higher natural rubber prices driving consumers to synthetic rubbers based on Bd
- Lighter cracking
 - Higher naphtha prices
 - Structural change in US ethane market
- Low cost gas-based ethylene capacity coming on-stream in Middle East.

July 2008 - Tire Demand Data

New Tire Demand

- June vehicle production down 8% and falling
- Vehicle production skewed towards smaller vehicles
- Tire demand could be down over 12%

Replacement Tires

- Higher gas prices are reducing miles driven
- Expect reduced tire demand over time
- May take 3-6 months to play out.

October 2008

- Spread between gas and liquid feeds now down to \$.05
 Demand is shrinking – tire demand
 - is down
 - Asian market price drop of \$0.10- \$0.15 per lb

- Tire Demand is down Frees up Butadiene for SBS Suppliers
 - <u>Result 100% Bd available to SBS producers for now</u>
 - SBS suppliers will be able to build up substantial inventory this winter
 - Should be adequate SBS supply in 2009

4Q 2008 Economic Decline – Makes Bd Supply Longer

4Q Decline by Industry Segment

- Economy progressively shut down during the fourth quarter
- Housing industry started years before
- Tire industry was the first 4Q casualty
- Adhesive industry followed quickly behind tires
- Followed by general chemicals/Ethylene
- The sequence helped increase Bd supply

Low Natural Rubber Prices Push Out Synthetic

February 2009 - Outlook

- Expect demand to be lower than 2008 across all market segments
 - Ethylene is expected to be 10-20% lower than 2008
 - Tire demand expected to be 20% lower than 2008
- Butadiene supply should be adequate in 2009.
- AMAP was correct!!!

2010 Outlook

- Expect demand to remain at a reduced level across all market segments in 2010
- US economy not expected to have a robust recovery
 - Tire demand expected to remain low

Paving demand expected to be flat
 Butadiene supply should be adequate in 2010.

2010 Outlook

- If BD demand unexpectedly increases dramatically – supply may be tight (not likely)
- Gas feeds to crackers is less expensive at this time – increasingly lighter feed stock at end of 2009
 - Gas feed currently has cost advantage of 5¢ per pound of ethylene compared to liquid feeds
 - Ethylene production ration to butadiene production is 10 to 1
 - If more BD is required by marketplace, cost of BD must increase by 50¢ per pound to justify switch to liquid feed and offset added cost of 5¢ per pound of ethylene.
- Conclusion Increase in BD demand will be supplied at a higher cost.

 SBS polymer-modified asphalts are typically cross-linked systems

- Contractor friendly
 - Terminal blend supply
 - Do not require agitation
 - Storage stable
 - No major changes to HMA plant operation
 - No major changes to HMA laydown and compaction
- State DOT agencies have developed specifications specifically for SBS systems
- Alternative modification systems may require changes for both DOT agencies and contractors

 SBR Latex – butadiene based polymer that is not in short supply at this time

- Not storage stable
- Must be blended at HMA plant
- Contractor now becomes asphalt modifier and must test and certify product

Non- butadiene polymers

- Reactive Ethylene Terpolymer (Elvaloy)
- Ethyl Vinyl Acetate (EVA)
 - Used in warm climates
 - Blended with SBS in cold climates
- Polyphosphoric Acid (PPA)
 - An extender, not an alternative
 - Can be blended with SBS to reduce SBS content

 Ground Tire Rubber (GTR) – wet process

- 18-22% GTR melted and swelled into asphalt
- No cross-linking
 occurs
- Not storage stable
- Not a terminal blend process
- AR binder cannot be PG graded in a meaningful way
- Recipe specification

Ground Tire Rubber (GTR) – terminal blend

- Typically proprietary process
- 10-12% GTR may be added at high temperature and processed with high shear milling
- Chemical stabilizer added
- SBS is sometimes used to stabilize the system
- GTR contains non-rubber • materials
 - Carbon black
 - Calcium carbonate
- Meeting solubility specification may be an issue •
- Settlement of inert materials in contractors tank may occur
- Cannot be PG graded under current DSR test 6 procedures

Hybrid Binders

- Blend of SBS and GTR
- Cross-linked system
- Storage stable
- Terminal blend system
- Current research sponsored by FL DOT at University of Florida

'NOTHING' is not an option

- PG Grading system is based on climate and traffic
- Using the wrong grade will lead to poor performance
- We have enough historical data to prove that PMA does improve pavement performance
- Flexibility and creativity are needed to come up with answers

Questions?

