

Use of Local Aggregates in SMA

Ross A. Bentsen, P.E., Quigg Engineering Inc. February 3, 2015

Illinois Tollway – Key Statistics

- 286-mile system comprised of four tollways
- Opened in 1958 as a bypass around Chicago to connect Indiana and Wisconsin
- Carries more than 1.4 million vehicles per day
- User-fee system
- No state or federal gas tax dollars used for maintenance and operations

Tollway SMA

- Used for all mainline overlays
- 2008-2009 Full-depth asphalt Jane Addams Memorial Tollway (I-90) in Rockford area
- 2015 Reagan Memorial Tollway (I-88) Rehabilitation
 - 2005 Rubbilized I-88 Rochelle to Rock Falls
 - □ 6-inch asphalt overlay Stage construction
 - 2015 Remove 2-inch surface, replace with 6-inches of WMA, including a 2-inch warm-mix SMA surface

Coarse Aggregates for Tollway SMA

Friction surface SMA –

High traffic pavements and curves

Coarse aggregate: crushed steel slag, quartzite, granite or diabase / trap rock

Binder SMA and surface SMA

Coarse aggregate: typically crushed gravel. (Also quartzite, granite, diabase / trap rock; crushed steel slag – surface only).

2008 Friction evaluation – OK for Tangents

Coarse Aggregates for Tollway SMA

- Friction aggregates non-Illinois sources
- Crushed gravel southern Wisconsin
- I-88 opportunity evaluate local crushed gravel sources for use in SMA surface

Local Aggregates for Tollway SMA

Evaluation approach

Identify potential sources

- Aggregate breakdown
 - Micro-Deval testing
 - Gyratory compaction to N_{max}

Aggregate Source Selection

- Proximity to Tollway and/or I-88
- Aggregate products and gradations
- Willingness to participate

Aggregate Sources

Control

□ Rock Road: Lathers crushed gravel (CM-14 and CM-16)

Michels: quartzite (CM-13 and CM-14)

Crushed Gravel

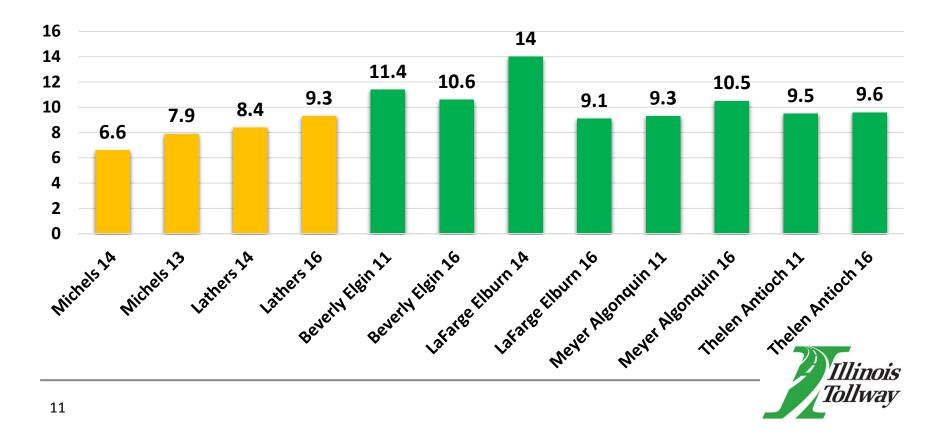
- Beverly Elgin (CM-14 and CM-16)
- □ Lafarge Elburn (CM-14 and CM-16)
- Meyer Algonquin (CM-16 and CM-11-scalped)
- Thelen Antioch (CM-16 and CM-11-scalped)

Aggregate Sources

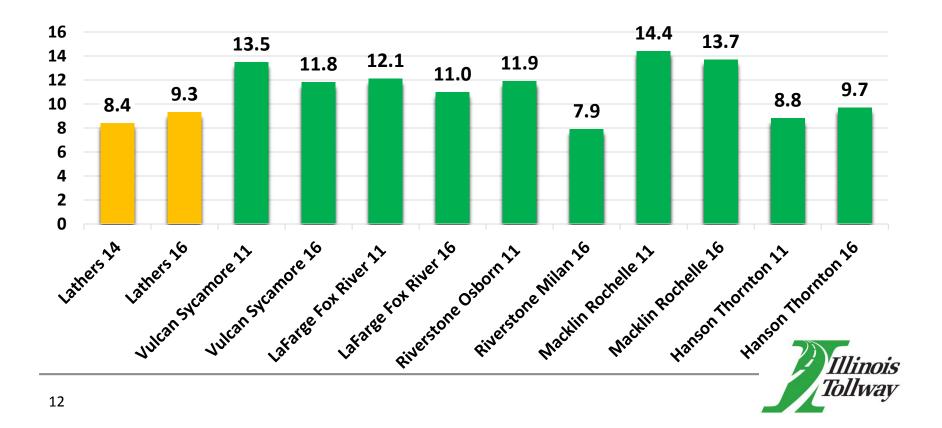
Dolomite

- □ Vulcan Sycamore (CM-16 and CM-11-scalped)
- □ Lafarge Fox River (CM-16 and CM-11-scalped)
- Riverstone Osborn (CM-11-scalped)
- Riverstone Milan (CM-16)
- □ Macklin Rochelle (CM-16 and CM-11-scalped)
- □ Hanson Thornton (CM-16 and CM-11-scalped)

Micro-Deval of Coarse Aggregates


AASHTO T327

- Aggregate breakdown (percent loss) in presence of water
- Good identifier of pavement performance
- "Mini" L.A. Abrasion
- Repeatable test
- Some agencies use in lieu of soundness



Micro-Deval Loss – Crushed Gravel

Micro-Deval Loss – Dolomite

- Aggregate substituted into an existing mix design at optimum asphalt content
- Samples gyrated to N_{max} = 225 gyrations
- Voids analysis
- Extraction gradation
- Hamburg of N₂₂₅ samples 20,000 cycles

Control Aggregates

	Michaels Quartzite	Lathers Crushed Gravel		
N ₈₀ Voids	3.5	3.8		
N ₂₂₅ Voids	2.2	2.0		
P200, Loose	8.1	7.7		
P200 @ N ₈₀	9.3	9.2		
P200 @ N ₂₂₅	9.5	9.1		

Crushed Gravel

	Beverly Elgin	Meyer Algonquin	Thelen Antioch
N ₈₀ Voids	3.6	3.1	3.2
N ₂₂₅ Voids	1.8	1.8	1.6
P200, Loose	8.1	7.7	7.8
P200 @ N ₈₀	9.1	8.9	8.7
P200 @ N ₂₂₅	9.4	9.4	9.1

Dolomite

	Riverstone	Macklin Rochelle	Vulcan Sycamore	Hanson Thornton
N ₈₀ Voids	3.6	3.8	3.7	3.8
N ₂₂₅ Voids	1.2	1.5	1.4	1.6
P200, Loose	8.1	8.1	8.1	8.1
P200 @ N ₈₀	8.0	9.5	9.9	9.9
P200 @ N ₂₂₅	9.4	10.8	10.0	10.6

Samples gyrated to N_{max} = 225 gyrations
Hamburg of N₂₂₅ samples - 20,000 cycles
Inconclusive results - all mixes (quartzite, crushed gravel, dolomite) had rut depths between 2.52 and 3.17 mm

Spec - Crushed Gravel for SMA

L.A. Abrasion – less than 28 percent loss

Micro-Deval loss

- □ Single source: less than 12.0 percent
- Coarse Aggregates: Design weighted average < 9.5 percent (includes coarse FRAP) – AOK, proceed with mix design
- □ If design weighted average 9.5 to 11.9 percent:
 - Conduct mix design optimum AC @ 3.5 percent Air Voids
 - Air voids at optimum AC and $N_{225} \ge 2.0$ percent

How does this compare?

- NCHRP 557 (aggregate tests for HMA)
 - M-D: Max loss of 15 recommended
- AASHTO T327 (M-D for coarse aggregate)
 - □ 17-18 for HMA surface course (Max 21 for lower courses)
- AASHTO M325 (Standard for SMA)
 - Max L.A. Abrasion = 30*
 - * higher values have been successful

Longitudinal Joint Performance

Longitudinal Joint Performance

Acknowledgements

- Steve Gillen Tollway Materials Manager
- John Lavallee S.T.A.T.E. Operations Manager
- S.T.A.T.E. Testing

Thank You